Types of Pelletizing Systems

- Strand – Water Bath
- Strand – Water Slide
- Hot Die Face – Air Cooled
- Die Face – Water Ring
- Die Face – Under Water
- Drop Pelletizing

Strand – Water Bath - Strengths

- Low cost
- Simple to use
- Easy to clean and changeover

Strand – Water Bath - Weaknesses

- Very little automation
- Limited pellet size
- High cutter wear/maintenance
- Sensitive to process variations

Strand – Water Slide - Strengths

- Higher level of automation
- Self stranding
- Variable cooling
- Higher process rates
- More compact

Strand – Water Slide - Weaknesses

- Higher cost
- High cutter wear and maintenance, but less than water bath
- Difficult to setup
Hot Die Face – Air Cooled - Strengths
- Very simple design
- No contact with water
- Compact layout
- Easy to setup and operate

Hot Die Face – Air Cooled - Weaknesses
- Very limited cooling capability
- Low outputs
- High blade Wear
- High dust levels

Die Face – Water Ring - Strengths
- Relatively low cost
- Compact design
- Better cooling capabilities
- No die freezing

Die Face – Water Ring - Weaknesses
- Limited to Olefins
- Poor performance on high heat and sticky materials
- Limited application range

Die Face – Under Water - Strengths
- Highest automation
- Very versatile – can process most any polymer
- High blade life
- Production of micro pellets

Die Face – Under Water - Weaknesses
- Relatively high system cost
- Complicated auxiliary and water/drying systems
- Die freeze issues on high heat products
Drop Pelletizing - Strengths

- Specialty system for low viscosity polymers and waxes

Drop Pelletizing - Weaknesses

- High cost and complexity

Strand Pelletizing, with manual feed

Normally, strand pelletizing with manual strand feed consists of the following components:

- Strand Die
- Cooling Trough
- Strand dryer
- Strand pelletizer

Extrusion Die

- Discharge angle between 45 & 90 degrees
- Die holes between 2 & 7 mm
- Maximum number of holes around 250
- Die width approximately 1500 mm
- Electric or oil heated

Cooling Trough

- Up to 2 m wide and 12 m long
- Two or more spreader bars
- Water flows opposite strand flow
- Vary temperature control
 - Multiple partitions or baths in series

Strand Drying

- Blowing, vacuum or a combination to remove water
Strand Pelletizer Features
- Working widths 25 to 1000 mm
- Compact design, with easy access
- Belt driven for speed range adjustment
- Easily replaceable wear parts
- Most universal pelletizing system available
- Strand is not suitable for:
 - Processes with frequent strand breaks
 - Frequent starts, with high throughput rates

Strand Pelletizer, cont.

Automatic Strand Feed – Dry Cut
- Starts and stops without manual intervention
- Broken strands are automatically re-threaded
- No water between strands or on surface

Water Trough – Automatic Feed
- Water supply table
- Water trough
- Spray nozzles
- Vertical trough adjustment
- Horizontal trough adjustment
- Water manifold

Automatic Strand Components
- Water supply table
 - Laminar water flow – defines thickness of the water layer
 - Table can be smooth or grooved
 - Swivel table to vertical plane
 - For startup – increase water flow by 30%
- Water trough
 - Slopes from 2 to 10 degrees
 - 2 to 7 m in length
 - Bottom must be smooth and can be covered
- Spray nozzles
 - Adjusted from “mist” to “spray”

Automatic Strand Components, cont.
- Strand drying
 - Water separated by gravity
 - Water removed through slots by vacuum, blowing or both
 - Residual moisture levels of approximately 0.1%
 - Strand speed should not exceed 100 m/min
 - Airspeeds of 25 to 35 m/s
- Pelletizer is basically the same as for manual system
- Typical applications
 - Working widths from 100 to 1000 mm
 - Rates up to 800 kg/h – pellet temperatures 70 to 120°C
Strand Conditioning

- Homogenizes the temperature of strand cross section.
- Clean pellet cut for glass filled materials.
- Pellet temperature reduced by 10 – 30 ºC.
- Lower residual moisture.

Diagram to show strand conditioning

- Die head
- Water trough
- Strand drying
- Temperature compensation section (strand conditioning)
- Pelletizer

Cooling Belts

- Die head
- Cooling belts
- Strand drying
- Pelletizer

Diagram to show cooling belts

- Die head
- Water trough
- Strand drying
- Pelletizer

Diagram to show water-free pelletizing

- Guide plate
- Guide plate channel
- Pelletizer
- Pneumatic pellet transport

Water-Free Pelletizing

- Die head
- Water trough
- Strand drying
- Pelletizer

Diagram to show wet cut, horizontal design

- Water trough
- Pelletizer
- Pelletizer after cooling section with agglomerate trap or start-up filter and water separator
- Pellet dryer

Horizontal Strand Pelletizing

- Water trough – similar to dry cut, 1.5 to 7 m long
- Water Separation
 - Water separated by gravity before entering pelletizer
 - Water conveyed from dryer to coolant circuit
- Pelletizer
 - Housing must be waterproof – bearings should be sealed
 - Cutting tools – abrasion proof & corrosion resistant
 - Spray the cutting rotor to prevent pellet adhesion
- Pelletizer cooling section
 - Pipe kept half full – pre-drainage before the dryer

Horizontal Pelletizing, cont.

- Pellet dryer
 - Accelerate pellets mechanically onto sieves or rings
 - Centrifugal dryers and impact ring centrifuges
 - Fluidized bed dryers
- Applications
 - Working widths from 200 – 1000 mm
 - Strand speeds up to 250 m/min
 - Throughputs up to 12,000 kg/h
 - PET, PBT, PA, PC, ABS, PP
Vertical Strand Pelletizing – Wet Cut

- Die head
- Strand guide
- Pelletizer
- Recooling section
- Pellet dryer

Vertical Pelletizing, cont.

- Strand guide and pelletizer form unit.
- Each strand has own guide groove.
- Normal heights between 2000 and 3600 mm.
- Working widths from 300 to 900 mm.
- Throughput rates up to 7500 kg/h.
- Brittle plastics, requiring short cooling sections.
- GPPS, HIPS, PMMA, SAN.

Water Ring Pelletizing

- No water at the die face – no die freeze
- Polymer cut in air – quenched in a ring of water
- Polymer must release from metal – olefins
- Pellets submerged in slurry – transported to dryer
- Die facing straight down or horizontal

Water Ring Pelletizing, cont.

Water Ring Pelletizing, cont.

Underwater Pelletizing System
Why are chips spherical, when an underwater pelletizing process is used?

The molten polymer is cut into drops by the fast rotating blades of the pelletizer just when leaving the die holes and emerging into the process water. Because of the temperature difference between molten drops and process water, the polymer drops solidify. Due to the physical tendency to optimize the ratio of volume to surface area, a spherical shape is formed.

Advantages of the underwater pelletizing process

- Optimized chip shape
- Less cooling water needed
- Less space requirements
- Shortened solid stating
- Environmental advantages
- Ease of operation
- Less capital investment
- Lower operating costs

for PET chip production:

- Higher bulk density
- Less bridging
- Better extruder feeding and shortened melt time
- More uniform and consistent intrinsic viscosity of the chips

for PET chip end users:

Main Components of an Underwater System

- Diverter Valve and pelletizer
- Watersystem incl. Pellet dryer
- Bypass piping

Different Types of Pelletizer Heads

- with spring
- with handwheel
- with hydraulic system

Cutting Chamber and Pelletizer Head

Cutting the liquid polymer strands after they left the die plate

No oxidation of polymer
Pelletizer Features

Automatic connection of the pelletizer to the cutting chamber

Die and cutter hub design

Exact blade adjustment ensures constant pellet quality

Special heat conduction of die plates

Die plates are evacuated during manufacturing to minimize the heated die body and to focus the heated heat at the die holes

Optimized flow paths for the melt

Pressure reduced flow channels X-in-1 designs

Track loyal cut

Reduced area of die/cooling water interface contact

New development straight cut blades

*Advantage:
Simple blade design
High number of blades possible
Specially used for micro pellets*
Exact blade/die distance

- no tails at pellets
- no smearing polymer at the die
- underwater cut of even lowest viscosities
- extended blade life
- extended die plate life

Hydraulic adjustment of cutter shaft

Determination of optimal hydraulic pressure to achieve optimized blade/die distance

Automatic sharpening of pelletizer blades

Continuous cleaning of die plate during sharpening process

Hydraulic pressure adjustments

Hydraulic pressure is increased in certain time intervals (every 10, 30, 60 or ... minutes)

Bypass piping

The process water entry into the cutting chamber can be exactly timed by the bypass valves and the related PLC program.

This avoids a "freeze-off" of the die holes (entry of process water too early) or an agglomeration of the pellets (entry of process water too late).

Watersystem incl. Pellet dryer

Self cleaning system for watersystem

Spray nozzels in the dryer

Fines removal sieve with cleaning system
Watersystem to feed 9 UWP for PA 6 Polymerisation

Underwater pelleting Advantages

- Complete and state-of-the-art engineering
- Integration of up- and downstream equipment and processes
- Less scrap because of easy automatic controlled startup
- Less freeze-off problems because of internal insulated die plate design
- Automatic sharpening of cutter blades
- Continuous cleaning of surface of die plate by rotary blades, no routine cleaning with stop is required
- Easy maintenance, no precise blade adjustment necessary, blades change within minutes

Pelletizing System Suppliers

<table>
<thead>
<tr>
<th>Company</th>
<th>Pelletizing Products</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markel Instruments</td>
<td>Under Water</td>
<td>Eagle Rock, VA</td>
</tr>
<tr>
<td>Underwater Corp.</td>
<td>Under Water, Strand, Water Bath and Water Slide</td>
<td>Spartanburg, SC</td>
</tr>
<tr>
<td>Markel Engineering</td>
<td>Strand, Under Water</td>
<td>Atlanta, GA</td>
</tr>
<tr>
<td>Unterbach Engineering</td>
<td>Strand, Water Bath</td>
<td>South Alabama, MI</td>
</tr>
<tr>
<td>Scheurkogel</td>
<td>Strand, Water Bath</td>
<td>Elgin, IL</td>
</tr>
<tr>
<td>Kollmorgen</td>
<td>Under Water</td>
<td>Krakow, Poland</td>
</tr>
</tbody>
</table>

Pelletizing Products Company